منابع مشابه
Note on a Nonlinear Volterra Equation
9. S. G. Krein, and O. I. Prozorovskaya, An analogue of Seidel's method for operator equations, Voronez. Gos. Univ., Trudy Sem. Functional. Anal. 5 (1957), 35-38. 10. W. V. Petryshyn, The generalized overrelaxation method for the approximate solution of operator equations in Hubert space, J. Soc. Indust. Appl. Math. 10 (1962), 675-690. 11. S. Schechter, Relaxation methods for linear equations, ...
متن کاملOn existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation
In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we give an example to illustrate the applications of our results.
متن کاملComputational Methods for a Nonlinear Volterra Integral Equation
In this work we are concerned with the numerical solution of a nonlinear weakly singular Volterra integral equation with a nonsmooth solution. We investigate the application of product integration methods and a detailed analysis of the Trapezoidal method is given. In order to improve the numerical results we consider extrapolation procedures and collocation methods based on graded meshes. Sever...
متن کاملA Method of Solving Nonlinear Mixed Volterra-Fredholm Integral Equation
Abstract In this paper, the representation of the exact solution to the nonlinear Volterra-Fredholm integral equations will be obtained in the reproducing kernel space. The exact solution is represented in the form of series. Its approximate solution is obtained by truncating the series and a new numerical approximate method is obtained. The error of the approximate solution is monotone deceasi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 1991
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap-53-3-227-232